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Abstract

Localizing sound sources in a visual scene has many impor-
tant applications and quite a few traditional or learning-based
methods have been proposed for this task. Humans have the
ability to roughly localize sound sources within or beyond
the range of the vision using their binaural system. However
most existing methods use monaural audio, instead of bin-
aural audio, as a modality to help the localization. In addi-
tion, prior works usually localize sound sources in the form
of object-level bounding boxes in images or videos and eval-
uate the localization accuracy by examining the overlap be-
tween the ground-truth and predicted bounding boxes. This
is too rough since a real sound source is often only a part of
an object. In this paper, we propose a deep learning method
for pixel-level sound source localization by leveraging both
binaural recordings and the corresponding videos. Specif-
ically, we design a novel Binaural Audio-Visual Network
(BAVNet), which concurrently extracts and integrates fea-
tures from binaural recordings and videos. We also propose a
point-annotation strategy to construct pixel-level ground truth
for network training and performance evaluation. Experimen-
tal results on Fair-Play and YT-Music datasets demonstrate
the effectiveness of the proposed method and show that bin-
aural audio can greatly improve the performance of localizing
the sound sources, especially when the quality of the visual
information is limited.

Introduction
Humans are able to extract a wealth of useful information
through eyes and ears and then integrate and interpret them
to further understand the surroundings. Imagine the scene
that two persons in front of you are singing a song together
but actually one of them is a lip-syncher. Can you locate the
sound source to identify the real singer with only your eyes?
What about with only your ears? It is generally quite difficult
to reach such a goal under both situations. On the one hand,
it is not hard for a human to pretend to do something to trick
others’ eyes. On the other hand, although ears seem more
difficult to be fooled than eyes, the sound can’t give us accu-
rate location except rough direction information. However,
by using eyes and ears together we could localize accurately
sound sources in many situations.
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Figure 1: Binaural audio-visual localization task. Given the
binaural recordings and the corresponding visual scene, our
method localizes the sound sources in pixel level and outputs
a localization map. Note that the pixel-level localization only
identifies the part of the object that is making the sound.

Audio-visual localization is a well-established task,
which aims at localizing sound sources in visual scenes by
integrating both visual and audio information. Most of the
existing methods (Senocak et al. 2018; Arandjelovic and
Zisserman 2018; Owens and Efros 2018; Zhao et al. 2018;
Hu, Nie, and Li 2019) integrate only monaural audio, which
is a mixture of sounds in a scene, to help localize sound
sources. The localization results are promising due to the
assistance of sound information. However, our perception of
monaural audio often cannot provide location information
or even a rough direction without the help of visual informa-
tion. In contrast, using binaural recordings to localize sound
sources is more reasonable and appeals more to common
sense. Binaural audio-visual localization would also benefit
a few other applications, such as robot navigation and action
recognition. Another practically useful application is that
it can help police officers to accurately locate the gunman
in the shooting, where the binaural audio can be achieved
by simply adding two microphones on the two sides of the
surveillance cameras, respectively. It is worth mentioning
that the importance of binaural recordings should be espe-
cially emphasized when the quality of visual information is
low or the videos are recorded at night or in foggy days.

In addition, to get a quantitative analysis for the local-
ization results, many prior methods such as Senocak et al.
(2018), Hu, Nie, and Li (2019) and Zhao et al. (2018) man-
ually annotate the sound objects using bounding boxes and
then calculate the accuracy by examining the overlap, e.g.,



the Intersection over Union (IoU), between the annotated
and predicted bounding boxes. However, the sound sources
often are much more similar to humans’ fixation which is
concentrated and small, e.g., a person’s throat or the sound-
ing objects they are holding. Other methods like (Gao and
Grauman 2019a; Arandjelovic and Zisserman 2018) can
provide pixel-level visualization results but no quantitative
results due to the lack of ground truth, since the localization
results are only by-products of their networks.

In this paper we consider the sound source localization
problem in pixel level and the process of our binaural audio-
visual localization is illustrated in Fig. 1. We propose a novel
Binaural Audio-Visual Network (BAVNet) to address this
problem and present concrete and accurate quantitative anal-
ysis. The input of our BAVNet consists of frame sequences
and the corresponding binaural recordings. We first extract
features from video frames, binaural audios, single left audio
and single right audio, respectively. Then we fuse the frame
features and the three types of audio features together. Con-
sidering that the left and right recordings are horizontally
symmetrical in the visual space as illustrated in Fig. 2, we
learn the mapping function between the visual and auditory
modalities. In the way that the left recording is mapped onto
the original frame while the right one onto the flipped image.
We also use Convolutional LSTM (ConvLSTM) (Shi et al.
2015) to model the dynamic changes in both visual and au-
ditory information. Finally, a decoder CNN is fed with the
intermediate results to recover the resolution and produce
localization result.

Figure 2: The horizontal symmetry of the left and right
recordings in a visual scene. We map the left recording onto
the original frame and map the right recording onto the hor-
izontally flipped frame.

The main contributions of this paper are as follows: (1)
We redefine the sound source localization problem in pixel
level instead of object level, which better reflects the reality;
(2) We propose a novel deep learning network of BAVNet to
tackle this problem by jointly extracting and integrating the
features from the binaural recordings and the correspond-
ing video; (3) We annotate two audio-visual datasets, Fair-
Play and YT-Music, for providing pixel-level supervision
and quantitative analysis; (4) Experimental results demon-
strate the effectiveness of the proposed method and show
that binaural audio can greatly improve the performance of
localizing the sound sources.

Related Work
Audio-visual analysis. As audio has been shown to be an
important modal for understanding visual scenes, a bunch
of audio-visual tasks has been introduced and addressed
in the community including sound classification (Aytar,
Vondrick, and Torralba 2016; Arandjelovic and Zisserman
2017), sound source separation (Owens and Efros 2018;
Zhao et al. 2018; Gao, Feris, and Grauman 2018; Gao and
Grauman 2019a,b; Xu, Dai, and Lin 2019; Zhao et al. 2019),
sound source localization (Senocak et al. 2018; Arandjelovic
and Zisserman 2018; Owens and Efros 2018; Zhao et al.
2018; Hu, Nie, and Li 2019), audio-visual event localization
(Tian et al. 2018; Wu et al. 2019), audio denoising (Gao,
Feris, and Grauman 2018; Gao and Grauman 2019b), sound
generation (Zhou et al. 2018) and audio inpainting (Zhou
et al. 2019).

Monaural audio-visual localization. Prior to the
widespread use of deep learning techniques, sound source
localization has already been a long-lasting topic which
received extensive attention in the literature. Traditional
approaches rely on projecting audio-visual data to low-
dimension subspace (Fisher III et al. 2001), synchrony
(Hershey and Movellan 2000) and motion cues such as
trajectory (Barzelay and Schechner 2007) and optical flow
(Izadinia, Saleemi, and Shah 2012). With the development
of deep learning techniques, Senocak et al. (2018) first pro-
posed the learning-based sound source localization in visual
scenes. Specifically, a two-stream structure is designed to
extract the audio and visual features independently and
then attention mechanisms are applied to the integrated
features to localize the sound sources. In addition, in
order to construct an unsupervised training setting, audio
and corresponding visual features are also constrained
to be close to each other in the feature space. A similar
technique was developed by Arandjelovic and Zisserman
(2018) for localizing objects that sound in the visual
scenes. Concurrently, Owens and Efros (2018) and Zhao
et al. (2018) proposed some different networks for sound
source localization, which can additionally perform the
separation of mixed speech messages and musical sound.
More recently, Hu, Nie, and Li (2019) integrated K-means
into a two-stream network to help distinguish objects or
sounds captured by video for both sound localization and
separation. Different from this line of researches, the goal
of our work is to localize sound sources using binaural
recordings, which is more similar to the normal auditory
system of humans.

Binaural audio-visual tasks. Until now, few works have
focused on localizing sound sources based on binaural
audio-visual data in a supervised fashion in the computer
vision community. The most relevant work was reported in
Gao and Grauman (2019a), which proposed a network to
convert the monaural audio to binaural audio using the visual
information. The localization results are only by-products
while performing binauralization during training, thus only
some qualitative results are presented instead of quantita-



Figure 3: The architecture of the proposed BAVNet. The network is fed with an input consisting of video frames, binaural audio,
single left and right audio channels, and generates the sound source localization map in an end-to-end fashion.

tive evaluations. Recently, Gao and Grauman (2019a) pro-
posed a novel teacher-student based network which success-
fully transfers knowledge learned from visual modality to
the stereo audio modality for a vehicle tracking problem.
Although that method and our work in this paper both try to
leverage the left-right audio for localization (Gao and Grau-
man (2019a) actually for tracking/detection), they differ in
several critical aspects. First, our goal is to localize sound
sources which often locates on parts of the whole object,
whereas Gao and Grauman (2019a) is to localize the whole
object as in Arandjelovic and Zisserman (2018). Next, and
equally critically, Gan et al. (2019) takes the meta-data of
the camera, including camera height, pitch angle, and ori-
entation between the camera and a street, as input for both
student-network training and the inference, thus it is only
easy to be applied into a self-recorded dataset. Instead, our
method can be applied to any in-the-wild dataset without the
meta-data of the camera. BatVision (Christensen, Hornauer,
and Yu 2019) is another recent work that takes advantage of
“two ears” to generate a disparity-like map to show details
about the depth and obstacles in the room.

Our Approach

In this section, we design a novel convolutional neural net-
work to learn localization of sound sources based on integra-
tion of both visual and binaural auditory information. Differ-
ent from most previous methods, which use two-stream net-
works to process video and audio separately and then con-
duct a fusion at the end to identify the final sound object, we
jointly model both visual and binaural audio features and
propose a new flipping operation for leveraging the horizon-
tal symmetry of the binaural audio-visual data to further lo-
calize sound source in pixel level.

Network Architecture
The architecture of the proposed BAVNet is illustrated in
Fig. 3, which takes video frames, binaural audio, single left
audio and single right audio as the input. We first extract fea-
tures from video sequence, binaural audio, single left record-
ing and single right recording concurrently, which are fol-
lowed by a ConvLSTM layer to model the temporal infor-
mation for each of the audio branch. Then we fuse the im-
age features and the binaural audio features together, and
the output is going to be combined with the mapping re-
sults produced by single left and right recording features.
The concatenation of these two feature maps are then fed
into a ConvLSTM layer to model the dynamic changes. Fi-
nally, the decoder which contains convolution and upsam-
pling layers is used to recover the resolution and generate
the localization map.

Video Feature Extraction
Following the way to extract multi-level feature for static im-
ages with VGG16 in Cornia et al. (2016), we use the VGG19
(pretrained on ImageNet) as the encoder (ImageEncoder in
Fig. 3) and take the features from three layers to form the
multi-level feature I including the third and fourth max-
pooling layers and the last convolution layer. Specifically,
we remove the last max-pooling layer and modify the stride
of the fourth max-pooling layer to 1. Finally, the size of I is
w
8 ×

h
8 , where w and h denote the width and height of the

input frame, respectively.

Binaural Audio Feature Extraction
We first perform short-time Fourier transform (STFT) (Grif-
fin and Lim 1984) on both left and right audio recordings to
obtain two spectrograms. Fig. 4 shows a sample of binau-
ral audio spectrogram representation along with the corre-
sponding audio.



Figure 4: Binaural audio waves and the corresponding trans-
formed spectrograms by applying STFT.

The binaural audio encoder (BiAudioEncoder in Fig. 3)
takes the concatenation of left and right audio spectrograms
as input. The BiAudioEncoder contains nine convolutional
blocks and each block is composed of a 2D convolutional
layer, a batch normalization layer and a LeakyReLU layer.
After performing the encoding, the pair of audio spectro-
grams is converted to a one-dimensional audio feature. To
map the audio information to the visual space, we reshape it
to the resolution of w

8 ×
h
8 and obtain an initial spatial rep-

resentation (Ab) for binaural audio. Then we feed Ab into a
ConvLSTM (Shi et al. 2015) layer, which is to capture the
temporal information of binaural audios:

A′b, Ct, Ht = ConvLSTM(Ab, Ct−1, Ht−1), (1)

where Ct and Ht are respectively the current cell state and
hidden state, while Ct−1 and Ht−1 are respectively the pre-
ceding cell state and hidden state. Then, the output A′b is
passed into a softmax layer (Softmax) to obtain the final
spatial representation for binaural audio:

Ãb = Softmax(A′b). (2)

Jointly Modeling Left and Right Recordings and
Video
Firstly, inspired by the widely-used soft-attention mecha-
nism, we fuse the binaural audio feature (Ãb) and frame fea-
ture (I) with a residual connection where the fusion result
F1 is defined by

F1 = Ãb � I + I, (3)

where the operator � denotes the elementwise multiplica-
tion. Then we perform a convolution operation on F1 to pro-
duce F ′1. Following the similar way for binaural audio en-
coding, we convert each channel of the binaural audio (left
and right) to its corresponding spatial representation (Ãl and
Ãr) respectively. Left and right audio encoders and the fol-
lowing ConvLSTM layer (AudioEncoder in Fig. 3) share
weights. Such a design partly comes from that the same
function needs to be applied to map both left and right au-
dio recordings onto a frame. Due to the fact that the left
and right audio recordings are horizontally symmetrical in
visual scenes as shown in Fig. 2, we also make use of the
horizontal symmetry by applying flipping operation to learn
the mapping function (the common weight-sharing encoder)
between the visual and auditory modalities.

To be specific, the single left audio feature Ãl is multi-
plied to the former fusion result F ′1, and the single right

audio feature Ãr is multiplied to the flipped fusion result
flip(F ′1). The final fusion result F2 is then defined by

F2 = 〈Ãl · F ′1 + F ′1, flip(Ãr · flip(F ′1) + flip(F ′1))〉, (4)

where 〈·, ·〉 denotes the concatenation operation. F2 is then
fed into a convolution layer and followed by ConvLSTM
layer which is able to capture dynamic changes in temporal
dimension for both videos and audios.

Finally, a decoder which consists of six convolution lay-
ers and three bilinear upsampling layers in between is used
to recover the resolution back to the original input size and
generate the sound source localization map in pixel level.

Loss Function
We first choose the Kullback-Leibler divergence and the
Mean Squared Error to be part of the loss functions for
the ground-truth sound source localization map (GT ) and
the predicted sound source localization map (P ), where the
KL divergence is a distribution-based loss function which
was widely used for visual saliency estimation. We adopt
it here in order to evaluate the localization prediction with
a probabilistic interpretation, while the MSE loss can con-
strain the prediction to be pixel-wisely similar to the ground
truth. In addition, based on the observation that human can
very roughly localize the sound source by using their bin-
aural system only, we also add two additional terms to the
loss function, which minimize the distance between the in-
termediate result A and the rescaled ground-truth map (1/8
of the original resolution). Thus, our loss function is finally
defined as follows:

L = LKL(GT,P ) + βLMSE(GT,P )+

α(LKL(S(GT ), Ãb) + βLMSE(S(GT ), Ãb)),
(5)

where α and β are weighting parameters (set to be respec-
tively 0.2 and 100 in all experiments), LKL and LMSE are
the Kullback-Leibler divergence and Mean Squared Error
respectively, and the rescaling function S is used to rescale
the ground-truth map GT to be the same scale of Ãb.

We calculate the probabilistic representation T and F for
the ground-truth localization map GT and the predicted lo-
calization map P , respectively:

T (i, j) =
GT (i, j)∑

(i,j)GT (i, j) + ε
,

F (i, j) =
P (i, j)∑

(i,j) P (i, j) + ε
,

(6)

where ε is set to be 10−20, then the K-L divergence LKL is
defined as:

LKL =
∑
(i,j)

T (i, j) log

(
T (i, j)

F (i, j)
+ ε

)
. (7)

The Mean Squared Error LMSE is defined as:

LMSE =
1

hw

∑
(i,j)

(GT (i, j)− P (i, j))2. (8)



Experimental Results
Datasets
To generate accurate sound source localization maps and ful-
fill the purpose of supervision for training, we manually la-
bel the datasets, FAIR-Play and YT-MUSIC, by annotating
a set of points to construct pixel-level ground-truth locations
of the sound sources, as illustrated in Fig. 5. Note that, we
only annotate the middle frame for each video clip and the
number of points we use on that frame depends on the con-
tent of the frame, e.g. the number of sound sources and the
area of each sound source on that frame. Then we apply the
Gaussian blur with the radius of 4 to the labeled points to
produce a continuous representation of the sound source lo-
calization map as the ground truth.

Figure 5: An illustration of the ground-truth annotation
of sound source localization. (a) A frame, (b) the labeled
points, and (c) the sound-source localization map by Gaus-
sian blur.

FAIR-Play (Gao and Grauman 2019a): FAIR-Play is the
first audio-visual dataset recorded with both videos and
professional binaural audios in a music room. Specifically,
audios are recorded by 3Dio binaural microphones and a
GoPro is mounted on the top to record the correspond-
ing videos, i.e., the whole system is trying to simulate the
auditory and vision of humans to collect data (See Gao
and Grauman (2019a) for a vivid description). In total, the
dataset consists of 1,871 pairs of videos with a resolution
of 320× 176 and binaural audios (10 seconds for each). For
each video, we extract 102 frames with a sampling rate of 10
and manually label the sound sources in the middle frame
(the fiftieth one). We use the ‘split1’ proposed in Gao and
Grauman (2019a) to construct our train/test splits for train-
ing and evaluation.

YT-MUSIC (Morgado et al. 2018): The YT-MUSIC
dataset is collected from Youtube for spatial audio genera-
tion by Morgado et al. (2018), which contains 397 videos
that are all 360◦ videos with resolution of 448 × 224. Be-
cause a small number of videos have been removed by the
creators and some videos have inconsistent audio and video,
we finally use 317 videos (a subset of the original dataset)
with 250 videos for training and 67 for testing. Following
the guidance of Gao and Grauman (2019a), we use the head
related transfer function (HRTF) to transfer the ambisonic
audio into the corresponding binaural audio.

Both datasets include singing and instruments playing
scenarios with indoor (FAIR-Play, YT-MUSIC) and outdoor
(YT-MUSIC) cases.

Metrics
Given the format similarity between the sound-source local-
ization map in our work and image-saliency map, we pro-
pose to use three metrics that are often used in saliency pre-
diction (Jiang et al. 2018; Bak et al. 2017) for quantitatively
evaluating the pixel-level sound-source localization accu-
racy: Pearson’s correlation coefficient (CC), Similarity Met-
ric (SIM) and Earth Mover’s Distance (EMD). For this pur-
pose, we normalize both the ground-truth localization map
(after Gaussian blur) and the predicted localization map to
probability maps (adding all the elements of a map is one),
and then reshape them into vectors before applying the three
metrics.

CC is a statistical method to measure the linear correlation
between two normalized variables, which has been widely
used for saliency detection. The value of CC is range from
-1 to 1, where 1 is the perfect positive linear correlation, 0
means no correlation and -1 represents negative linear cor-
relation.

SIM measures the similarity between two distributions,
which was firstly introduced for evaluating image matching
accuracy (Swain and Ballard 1991). SIM being equal to one
means that the distributions are identical. The larger SIM,
the better the similarity.

EMD is used to measure the spatial distance between
two distributions by computing the minimum transforma-
tion cost that one distribution would take to match the other,
which is first introduced for image matching (see (Rubner,
Tomasi, and Guibas 2000) for details). The EMD value of
two identical distributions is 0.

Model Specification
Training setting. BAVNet is implemented using Pytorch
and trained with one Nvidia 2080Ti GPU. We take Adam
as the optimizer by setting weight decay to be 0.0001. The
starting learning rate is set to 0.0001, then it decayed by mul-
tiplying it with the decay factor 0.8 for every 10 epochs. We
train the network for 200 epochs in total with the batch size
being 1.

More details. For video data pre-processing, we randomly
pick a video clip whose length ranges from 20 to 50 frames
from each video. Note that the last frame of each clip is fixed
at the one which has the label for later use of calculating the
loss. We use the data augmentation strategy of horizontal
flipping (the frame is horizontally flipped while the left-right
channels of the binaural audio are swapped with each other).
We also randomly shift the audio segmentation window and
the shifting ranges from -1 ms to 1 ms, while the video is
fixed. For the audio data pre-processing, we first resample
the audio at 16 kHz, then STFT is calculated with the win-
dow length of 64 ms, the hop length of 8 ms and the FFT
size of 512.

Baselines and Comparison Results
We compare our full-setting model (BAVNet) with the fol-
lowing baselines to evaluate the proposed method:



Methods FAIR-Play YT-MUSIC
CC SIM EMD CC SIM EMD

Video-only 0.679 0.544 2.129 0.375 0.325 4.532
Single left audio w/ video 0.742 0.579 1.965 0.415 0.337 4.323

Single right audio w/ video 0.741 0.582 1.959 0.414 0.335 4.326
Monaural audio w/ video 0.743 0.583 1.698 0.414 0.332 4.319

Waveform w/ video 0.693 0.556 2.097 0.383 0.329 4.458
BAVNet 0.776 0.625 1.618 0.434 0.364 4.312

Table 1: Quantitative comparisons of baseline approaches and the proposed BAVNet on the FAIR-Play test set and the YT-
MUSIC test set. For CC and SIM, the higher the better, while for EMD, the lower the better.

Figure 6: Visual comparisons of (a) the video-only, (b) the monaural audio with video, and (c) the proposed BAVNet on the
FAIR-Play test set.

• Video-only: Only use the visual information to predict
sound sources.

• Single audio with video: Use only either left channel or
right channel as the audio input.

• Monaural audio with video: For each video clip, we add
the left and right channels together to form the one chan-
nel monaural audio. The format of the input is the same
as many previous methods (Senocak et al. 2018; Arand-
jelovic and Zisserman 2018; Owens and Efros 2018; Zhao
et al. 2018; Hu, Nie, and Li 2019).

• Waveform of binaural audio: Uses the raw binaural au-
dio wave as the input instead of the converted spectro-
gram. When the waveform is applied, we change all the
2D convolution operations into 1D convolution for the
binaural audio encoder.
Comparison results with the baselines are reported in Ta-

ble 1 and our BAVNet clearly outperforms all the others on
both datasets. It is obvious that using both audio and video
gets better performance than using video only. In the human

auditory system, our brain can perceive subtle differences
in intensity, spectral and timing to localize sound sources
(Hearing 1983; Thompson 2018) whose cues are not kept by
single audio or the monaural audios. Similarly, our method
also shows that the binaural auditory modality does further
significantly improve the performance of sound source lo-
calization than the monaural auditory one.

Some visual comparisons are shown in Fig. 6, where we
again can see that the binaural audio really plays an impor-
tant role in localizing the sound sources. For example, only
the BAVNet captures that the woman is singing in the third
picture, and without the binaural audio, the network local-
izes the left piano in the last picture by mistake.

We also observe that the spectrogram is a better represen-
tation compared to the raw audio wave when using BAVNet
to solve the sound source localization problem. We hypoth-
esize that the reason is that the spectrogram can offer a more
intuitive representation for the differences of amplitude, fre-
quency and timing cues than the waveform.



FAIR-Play YT-MUSIC
Model variants CC SIM CC SIM

BAVNet 0.776 0.625 0.434 0.364
Visual branch w/o multi-level feature 0.658 0.583 0.407 0.323

Binaural audio branch w/o the branch 0.761 0.615 0.431 0.357

Single audio branches w/o the two branches 0.752 0.592 0.421 0.332
w/o only flipping operation 0.749 0.591 0.422 0.339

Fusion w/o residual connection 0.656 0.578 0.411 0.329
- w/o ConvLSTM 0.611 0.429 0.357 0.314

Loss function
w/o KL loss 0.701 0.609 0.412 0.325

w/o MSE loss 0.704 0.612 0.419 0.325
w/o auxiliary loss function 0.769 0.621 0.432 0.357

Table 2: Comparisons on several model variants for justification of the main components of the proposed BAVNet on the
FAIR-Play test set and the YT-MUSIC test set.

Ablation Study and Analysis
To evaluate the effectiveness of the main components of our
BAVNet, we also conduct ablation studies on several model
variants on the FAIR-Play and YT-MUSIC datasets. The fol-
lowing components are justified: 1) the visual branch; 2) the
binaural audio branch; 3) the single audio branch; 4) the fu-
sion operation; 5) the dynamic change modeling and 6) the
loss function (auxiliary loss, KL loss and MSE loss).

Results are reported in Table 2, from which we can see
that all of these components of BAVNet are useful. For the
visual branch, the multi-level feature from the image en-
coder is helpful for the image feature extraction. Both of the
binaural audio branch and the single audio branch can help
encode the audio feature for the network. Specifically, the
flipping operation for the single audio branch is crucial to
map the audio feature to the visual space. The residual con-
nection for fusing the audio feature and the image feature
can improve the performance, while three ConvLSTMs in
the audio branch and another one before decoder are essen-
tial to obtain the dynamic change from the previous state. In
the end, the auxiliary loss terms on the intermediate result
and the combination of the KL loss and the MSE loss are
also well justified.

To compare our proposed BAVNet with other visual-
audio localization networks, we implement several state-
of-the-art methods and train them by adding a supervised
loss against the ground-truth annotations as done in our
method. Table 3 includes the auido localization performance
of the AVOLNet (Arandjelovic and Zisserman 2018) and
two visual-audio network based on (Owens and Efros 2018;
Senocak et al. 2018).

Model CC SIM
AVOL-Net 0.453 0.398
Owenset al. 0.748 0.540

Senocak et al. 0.712 0.603
BAVNet 0.776 0.625

Table 3: Comparisons of the proposed BAVNet with some
existing audio localization models on the FAIR-Play test set.

Figure 7: The sound source localization results of three ex-
amples from the YT-Music test set by using the proposed
BAVNet. The top row is the input frame, the middle row is
the prediction by the proposed BAVNet and the bottom row
is the ground truth.

In Fig. 7, we provide some examples of the sound source
localization results predicted by our BAVNet on the YT-
MUSIC dataset, which are visually very consistent with the
ground truth.

Conclusion

In this paper we studied the sound source localization prob-
lem by stressing that the sound sources should be more con-
centrated and accurately represented in pixel level instead
of object level. Following the way that humans usually use
to localize the sound sources, we proposed a novel Binaural
Audio-Visual Network (BAVNet) which takes in both visual
and binaural auditory information as the input, to generate
the source localization map in an end-to-end fashion. We
also manually label two existing datasets, FAIR-Play and
YT-MUSIC, to provide pixel-level supervision for the train-
ing of BAVNet. From the experimental results, we found that
binaural audio can greatly promote the localization accuracy
than monaural audio, especially when the visual scene con-
tains some degradation effects.



References
Arandjelovic, R.; and Zisserman, A. 2017. Look, Listen and
Learn. In IEEE International Conference on Computer Vi-
sion (ICCV).

Arandjelovic, R.; and Zisserman, A. 2018. Objects that
sound. In European Conference on Computer Vision
(ECCV), 435–451.

Aytar, Y.; Vondrick, C.; and Torralba, A. 2016. Soundnet:
Learning sound representations from unlabeled video. In
Advances in neural information processing systems, 892–
900.

Bak, C.; Kocak, A.; Erdem, E.; and Erdem, A. 2017. Spatio-
temporal saliency networks for dynamic saliency prediction.
IEEE Transactions on Multimedia 20(7): 1688–1698.

Barzelay, Z.; and Schechner, Y. Y. 2007. Harmony in mo-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 1–8. IEEE.

Christensen, J. H.; Hornauer, S.; and Yu, S. 2019. BatVision:
Learning to See 3D Spatial Layout with Two Ears. arXiv
preprint arXiv:1912.07011 .

Cornia, M.; Baraldi, L.; Serra, G.; and Cucchiara, R. 2016.
A deep multi-level network for saliency prediction. In
2016 23rd International Conference on Pattern Recognition
(ICPR), 3488–3493. IEEE.

Fisher III, J. W.; Darrell, T.; Freeman, W. T.; and Viola, P. A.
2001. Learning joint statistical models for audio-visual fu-
sion and segregation. In Advances in neural information pro-
cessing systems, 772–778.

Gan, C.; Zhao, H.; Chen, P.; Cox, D.; and Torralba, A.
2019. Self-Supervised Moving Vehicle Tracking With
Stereo Sound. In IEEE International Conference on Com-
puter Vision (ICCV).

Gao, R.; Feris, R.; and Grauman, K. 2018. Learning to sep-
arate object sounds by watching unlabeled video. In Euro-
pean Conference on Computer Vision (ECCV), 35–53.

Gao, R.; and Grauman, K. 2019a. 2.5D Visual Sound. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Gao, R.; and Grauman, K. 2019b. Co-Separating Sounds of
Visual Objects. In IEEE International Conference on Com-
puter Vision (ICCV).

Griffin, D.; and Lim, J. 1984. Signal estimation from mod-
ified short-time Fourier transform. IEEE Transactions on
Acoustics, Speech, and Signal Processing 32(2): 236–243.

Hearing, S. 1983. The psychophysics of human sound local-
ization. J. Blauert .

Hershey, J. R.; and Movellan, J. R. 2000. Audio vision: Us-
ing audio-visual synchrony to locate sounds. In Advances in
neural information processing systems, 813–819.

Hu, D.; Nie, F.; and Li, X. 2019. Deep Multimodal Clus-
tering for Unsupervised Audiovisual Learning. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

Izadinia, H.; Saleemi, I.; and Shah, M. 2012. Multimodal
analysis for identification and segmentation of moving-
sounding objects. IEEE Transactions on Multimedia 15(2):
378–390.
Jiang, L.; Xu, M.; Liu, T.; Qiao, M.; and Wang, Z. 2018.
Deepvs: A deep learning based video saliency prediction
approach. In European Conference on Computer Vision
(ECCV), 602–617.
Morgado, P.; Nvasconcelos, N.; Langlois, T.; and Wang, O.
2018. Self-supervised generation of spatial audio for 360
video. In Advances in Neural Information Processing Sys-
tems, 362–372.
Owens, A.; and Efros, A. A. 2018. Audio-visual scene anal-
ysis with self-supervised multisensory features. In European
Conference on Computer Vision (ECCV), 631–648.
Rubner, Y.; Tomasi, C.; and Guibas, L. J. 2000. The earth
mover’s distance as a metric for image retrieval. Interna-
tional journal of computer vision 40(2): 99–121.
Senocak, A.; Oh, T.-H.; Kim, J.; Yang, M.-H.; and
So Kweon, I. 2018. Learning to Localize Sound Source in
Visual Scenes. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.;
and Woo, W.-c. 2015. Convolutional LSTM network: A ma-
chine learning approach for precipitation nowcasting. In Ad-
vances in Neural Information Processing Systems, 802–810.
Swain, M. J.; and Ballard, D. H. 1991. Color indexing. In-
ternational journal of computer vision 7(1): 11–32.
Thompson, D. M. 2018. Understanding audio: getting the
most out of your project or professional recording studio.
Hal Leonard Corporation.
Tian, Y.; Shi, J.; Li, B.; Duan, Z.; and Xu, C. 2018. Audio-
visual event localization in unconstrained videos. In Euro-
pean Conference on Computer Vision (ECCV), 247–263.
Wu, Y.; Zhu, L.; Yan, Y.; and Yang, Y. 2019. Dual Attention
Matching for Audio-Visual Event Localization. In IEEE In-
ternational Conference on Computer Vision (ICCV).
Xu, X.; Dai, B.; and Lin, D. 2019. Recursive Visual Sound
Separation Using Minus-Plus Net. In IEEE International
Conference on Computer Vision (ICCV).
Zhao, H.; Gan, C.; Ma, W.-C.; and Torralba, A. 2019. The
Sound of Motions. In IEEE International Conference on
Computer Vision (ICCV).
Zhao, H.; Gan, C.; Rouditchenko, A.; Vondrick, C.; McDer-
mott, J.; and Torralba, A. 2018. The sound of pixels. In Eu-
ropean Conference on Computer Vision (ECCV), 570–586.
Zhou, H.; Liu, Z.; Xu, X.; Luo, P.; and Wang, X. 2019.
Vision-Infused Deep Audio Inpainting. In IEEE Interna-
tional Conference on Computer Vision (ICCV).
Zhou, Y.; Wang, Z.; Fang, C.; Bui, T.; and Berg, T. L. 2018.
Visual to Sound: Generating Natural Sound for Videos in the
Wild. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).


