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Abstract

The performance of predicting human fixations in videos has
been much enhanced with the help of development of the
convolutional neural networks (CNN). In this paper, we pro-
pose a novel end-to-end neural network “SalSAC” for video
saliency prediction, which uses the CNN-LSTM-Attention
as the basic architecture and utilizes the information from
both static and dynamic aspects. To better represent the static
information of each frame, we first extract multi-level fea-
tures of same size from different layers of the encoder CNN
and calculate the corresponding multi-level attentions, then
we randomly shuffle these attention maps among levels and
multiply them to the extracted multi-level features respec-
tively. Through this way, we leverage the attention consis-
tency across different layers to improve the robustness of the
network. On the dynamic aspect, we propose a correlation-
based ConvLSTM to appropriately balance the influence of
the current and preceding frames to the prediction. Experi-
mental results on the DHF1K, Hollywood2 and UCF-sports
datasets show that SalSAC outperforms many existing state-
of-the-art methods.

Introduction

Saliency prediction has been introduced for years to learn
how people select useful information from complicated vi-
sual information they see every day. Thanks to the devel-
opment of the deep learning techniques and the appearing
of many static gaze datasets such as SALICON (Jiang et al.
2015), the performance of the image saliency prediction has
been boosted very rapidly.

In recent years, video saliency prediction captures more
interest in the Al and vision community due to its huge ben-
efit to other applications, e.g., video captioning, video com-
pression and video object segmentation. Compared to im-
age saliency prediction, it is a much more challenging task.
Besides, extracting spatial features accurately as in image
saliency prediction, video saliency prediction also needs to
balance the memory to be kept (e.g., some moving objects
and the newly appearing or disappearing objects) in the cur-
rent state and the memory to be forgotten (e.g., some static
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Figure 1: Visualization of the predicted saliency results of
two test cases by our network SalSAC.

objects) in its preceding states along the temporal dimen-
sion; in other words, it needs to consider both spatial and
temporal context information to make decision.

Many methods have been proposed to tackle these chal-
lenges in video saliency prediction mentioned above. To
fully extract the spatial features, early works (Gao, Mahade-
van, and Vasconcelos 2008; Guo and Zhang 2009) mainly
depend on hand-crafted features, such as intensity, color and
orientation. In recent years, many approaches (Bak et al.
2017; Wang et al. 2018a) are proposed to use convolutional
neural networks (CNN), such as VGG16 and ResNet, as the
encoder to extract features from the image sequences. Later,
the attention mechanism is also utilized within the networks
to further enhance the spatial features (Wang et al. 2018a;
Cornia et al. 2018). In this paper, we propose a shuffled at-
tention module, which shuffles multi-level attention maps
calculated from the multi-level features to enforce the atten-
tion consistency across levels and further enhance the qual-
ity of spatial features.

To absorb information from both historic frames and the
current one, Convolutional LSTM (ConvLSTM) (Shi et al.
2015) structure is imported into this task in (Gorji and Clark
2018; Jiang et al. 2018; Wang et al. 2018a). Compared to
the original LSTM, ConvLSTM can capture useful temporal
information in addition to the spatial one. While the Con-
vLSTM can model certain long-short term memory in the



sequence prediction, it is still difficult to accurately capture
the newly appearing or disappearing objects. Furthermore,
due to the complex nature of human attention, it is always
uncertain which one is more important among the historic
information and that from the current frame. Inspired by
SalEMA (Linardos et al. 2019), which uses the exponential
moving average recurrence operation to balance the current
state and its preceding state, in this paper we adapt the tra-
ditional ConvLSTM to include the relationship between the
adjacent frames based on the correlation information. In par-
ticular, when the correlation value is large, which means the
feature of the current frame is similar to that of its preced-
ing one, the ConvLSTM should consider the feature of the
preceding frame more; on the contrary, when the correla-
tion value is small, which means there could be appearing or
disappearing of objects, the ConvLSTM should weigh the
feature of the current frame more.

More specifically, in this paper we propose an end-to-
end neural network “SalSAC” for video saliency prediction,
which takes the CNN-LSTM-Attention (Wang et al. 2018a)
as the basic architecture (without using more parameters)
and utilizes a shuffled multi-level attention module and a
correlation-based ConvLSTM. Static features are first ex-
tracted from frames through an encoder CNN. The shuffled
attention module is then used to enhance the performance
and improve the robustness of the whole network, and the
correlation-based ConvLSTM is designed for balancing the
weight of the current state and its preceding state depending
on the correlation value. Finally, a decoder CNN is fed with
the intermediate results to predict the final saliency maps as
shown in 1. We conduct various experiments on the DHF1K,
Hollywood-2 and UCF-sports datasets and the results on all
the datasets clearly demonstrate the effectiveness and accu-
racy of our method.

The main contributions of this paper are as follows:

e We propose a novel CNN-based neural network trained in
the end-to-end manner for video saliency prediction.

e We introduce a random shuffling mechanism for the
multi-level attentions calculated from the multi-level fea-
tures to further enhance the robustness of the network.

e We develop a correlation-based ConvLSTM in our net-
work, which can effectively and adaptively weigh the im-
portance of the current frame and its preceding one to the
saliency prediction.

e Our method outperforms many existing state-of-the-art
networks on the DHF1K, Hollywood-2 and UCF-sports
datasets by using similar and less parameters.

Related work
Saliency Prediction

Saliency prediction for static images has been studied for
years and good results have been achieved by both tradi-
tional models (Gao and Vasconcelos 2005; Hou and Zhang
2007; Judd et al. 2009) and deep learning based methods
(Cornia et al. 2016; 2018; Jiang et al. 2019). This task
was later extended into videos, mostly driven by the in-
creasing need of video processing applications. In the early

works (Gao, Mahadevan, and Vasconcelos 2008; Guo and
Zhang 2009; Rudoy et al. 2013), stimulus modalities and
motion features are used to model the saliency in videos.
Recently, many CNN based methods (Bak et al. 2017; Leif-
man et al. 2017; Gorji and Clark 2018; Wang et al. 2018a;
Jiang et al. 2018; Cheng et al. 2018; Linardos et al. 2019)
are proposed to avoid the limitation of the hand-crafted fea-
tures and improve the performance of saliency prediction. In
(Bak et al. 2017), a two-stream network is adopted to inte-
grate both spatial and temporal information using the pre-
computed optical flow. Similarly, in DeepVS (Jiang et al.
2018) two sub-networks are used to obtain the object and
motion features and then the fused features are sent into a
two-layer ConvLSTM to infer the final saliency maps. In ad-
dition to motion features, depth information is used in (Leif-
man et al. 2017) to enhance saliency prediction. In (Cheng et
al. 2018) a spatial-temporal network with weakly-supervised
training is proposed to predict saliency for 360° videos.

ConvLSTM

To make use of the temporal information in videos and pre-
serve the spatially informative features, ConvLSTM layers
have been widely used in many video tasks (Luo et al. 2017;
Tao et al. 2018; Jiang et al. 2018; Wang et al. 2018a). In
(Gorji and Clark 2018), a multi-stream ConvLSTM struc-
ture is used to learn the dynamic saliency and three atten-
tion push cues including gaze following, rapid scene change
and attentional bounce. Although the ConvLSTM can hold
the temporal information in its cell, it is still hard to accu-
rately balance the influence of the features in the current
frame and its preceding one. A simple version of recurrent
model by learning a hyper-parameter is used in (Linardos et
al. 2019) to weigh the features of the current and preced-
ing frames to replace the ConvLSTM and get a comparable
performance. However, this hyper-parameter is learnt during
training and then is fixed during the testing process, which
may not be suitable for all test cases. It is more reasonable
for the network to first consider the relationship between
each two consecutive frames and then decide how to appro-
priately weigh the importance of the current and preceding
ones to the saliency prediction. Inspired by this idea, in this
work, we utilize the correlation layer proposed in FlowNet
(Dosovitskiy et al. 2015) to calculate the correlation of the
features between the consecutive frames and then use this
information to weigh the current and preceding states. Note
that our approach also make the weight to be case-specific
even during the testing process.

Attention Mechanism

Attention mechanism has been proven to be very useful for
enhancing the performance in many computer vision tasks
including image/video saliency prediction. In (Wang et al.
2018a), an attention module is used and trained on an im-
age saliency dataset for improving the quality of the static
features. We also make use of the attention mechanism in
this work - we calculate multi-level attentions from the cor-
responding multi-level features and then randomly shuffle
them among all levels to leverage the attention consistency
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Figure 2: Architecture of the proposed SalSAC network for video saliency prediction, which contains a shuffled attention
module and a correlation-based ConvLSTM layer. Here, f; is the current frame for saliency prediction.

along the layers in the network and finally to enhance the
robustness of the whole architecture.

Our Approach

The overall architecture of the proposed SalSAC network
for video saliency prediction is shown in Figure 2, which
follows the CNN-Attention-ConvLSTM pipeline. The first
step is to extract multi-level static image features from the
frame sequences using the encoder CNN. Then the shuffled
attention module is applied to calculate and shuffle the atten-
tions of the multi-level features. The output of the attention
module, together with the calculated correlation between the
current frame and its preceding one, are then fed into the
correlation-based ConvLSTM layer to model the dynamic
changes of the two frames along the temporal dimension.
Finally, several convolution and upsampling layers are used
as the decoder to process the intermediate results and pro-
duce the final saliency prediction.

Encoder-Decoder

Similar to the work of (Cornia et al. 2016) which uses
VGG16 as an encoder to extract multi-level features from
static images, we take the outputs from three layers of
VGG19 (Simonyan and Zisserman 2014) (the third and
fourth max-pooling layers and last convolutional layer) as
the multi-level spatial feature information. In order to re-
duce rescaling operations in the decoder, we remove the last
max-pooling layer and change the stride of the fourth max-
pooling layer to 1 in the original VGG19. Let i and w denote
the height and width of the input frame, then the output fea-
ture maps at all the three levels are of the same size (§ X %)
in the = and y dimensions but have respectively 256, 512 and
512 channels.

For the decoder part, we use six convolutional layers in
which the kernel sizes are all 3 x 3, and three additional
bilinear upsampling layers in which the scaling factors are
all set to be 2. With this decoder, the final predicted saliency
maps are restored back to their original resolution.

Shuffled Attention Module

Previous work (Cornia et al. 2018; Wang et al. 2018a) has
shown that the self-attention mechanism plays an important
role in further boosting the performance of both static and
dynamic saliency detection. Therefore, we add a modified
version of the attention module proposed in (Wang et al.
2018b) in our network to help concentrate on more impor-
tant regions. The multi-level features extracted by the en-
coder are the input of the attention module. Our modification
is inspired by (Guo et al. 2019), which leverages the atten-
tion consistency as a constraint for certain image transforms
such as scaling, rotation, flipping and translation to enhance
the performance of image classification. It is thus expected
that the attention maps should preserve certain attention con-
sistency across all levels.
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Figure 3: Architecture of the shuffled attention module,
which takes the three-level features produced from the en-
coder as the input.

Different from the approach taken in (Guo et al. 2019)



which imposes an extra term in the loss function to restrain
the attention maps of the multi-level features to be close,
we instead randomly shuffle the attention maps among the
three levels. The structure of the shuffled attention module
is illustrated in Figure 3, where the shuffle operation is em-
bedded into the non-local block (Wang et al. 2018b). First,
each of the three-level features is fed as input into three con-
volutional layers to get three feature maps (A, B and C),
and the first two feature maps (A and B) takes a multiplica-
tion (i.e., ATB after reshaping the spatial dimension into a
vector form), then the result is passed into a softmax layer
to obtain the attention map. Second, the three attention maps
are randomly shuffled for each iteration during training, e.g.,
the original three attention maps for Maxpool3, Maxpool4
and LastConv levels are applied to Maxpool4, LastConv and
Maxpool3 levels respectively, and then multiplied respec-
tively to the third feature map (C) at each level, which are
next added to the input multi-level features in a residual con-
nection manner. The three levels of outputs are finally con-
catenated together as the final static image information of
the current frame.

Correlation Operation

We use the correlation layer firstly introduced in (Dosovit-
skiy et al. 2015) to calculate the relationship between fea-
tures extracted from two consecutive frames. The structure
of the correlation operation is presented in Figure 4.
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Figure 4: The correlation operation based on the three-level
features between each pair of two consecutive frames.

The correlation operation is done for each of the three-
level features separately. For the level k& (k € {1,2,3}),
the correlation map C; is calculated using the following for-
mula:

Cr =C(ff 1. fF), (1

where fF | and fF are respectively the features of the cur-
rent frame and its preceding frame, and C represents the cor-
relation function for measuring the relationship between the
two given features, which is a dot-product operator along
the channel dimension here. The correlation results of all
levels are then concatenated and passed into a convolutional
layer and a global average pooling layer. Finally, a factor A is
obtained to measure the dynamic changes between the two

consecutive frames as follows:

64

= 2

A=o wh(§)(W0+b) , )
0,]

where W and b denote the weights and bias for the 3 x 3
convolutional layer respectively, C' is the concatenation of
Cq, Cy and Cj3, and o the sigmoid function to restrict the
range of the value to [0, 1].

The factor A will be used to measure the similarity be-
tween two frames. If A is large, it means that the dynamic
change is small, thus the historic information is important
for predicting the current frame. When there are objects
showing up or disappearing in the current frame, difference
between the two consecutive frames is large , resulting in
a small )\, and in this case the historic information is less
important.

Correlation-Based ConvLSTM

In (Jiang et al. 2018; Wang et al. 2018a), ConvLSTM has
been used to capture the temporal information of videos,
which consists of three gated operations: the input, forget
and output gates. The ConvLSTM layer sometimes cannot
capture the newly appearing objects very well, which how-
ever is important on the video saliency prediction task. To
address this issue, we propose a correlation-based ConvL-
STM by integrating the correlation information between the
current and preceding frames into ConvLSTM, Figure 5 il-
lustrates the difference between the traditional ConvLSTM
and the proposed correlation-based ConvLSTM.
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Figure 5: An illustration of (a) the traditional ConvLSTM
and (b) the proposed correlation-based ConvLSTM.

Our correlation-based ConvLSTM still uses the classic
three-gated operations, however, the inputs to all gates are
modified to:

(1=MNX;+ A Hiq, 3)

where X; is the output feature from the shuffled attention
module, H;_1 represents the hidden state and ) is the factor
calculated from the correlation operation. With the new in-
put described in Eq. (3), the three gated operations are then
redefined as follows:

I = o(Wi((1 —
Fy = o(W((1 -

ANX, + AH,_1) + by), 4)
NX; + AH,_1) + by), (5)



Or =o(Wo((1 = X)Xt +AHe—1) +bo), (6)
where I;, F}, O, are the input, forget and output gates,
respectively, {W;, W, W,} denote the weights, and
{b;,bs,b,} denote the bias. Then the new cell state Cy, i.e.,
the output of the correlation-based ConvLSTM, is also bal-
anced by the factor A and becomes:

Ct = )\Ft @ thl + (]. - )\)It @ Gt (7)
with
Gt = tanh(Wc((l — )\)Xt —+ )\Htfl) + bc), (8)

where ® denotes the element-wise product of the vectors.
The hidden state H; is defined as:

Ht = Ot O] tanh(Ct). (9)

By using the correlation-based ConvLSTM, we could
adaptively balance the importance of the information from
the current frame and its preceding one since A changes
along the sequence of frames.

Loss Function

Following the work of (Cornia et al. 2016; 2018; Wang et
al. 2018a), we choose the popular Kullback-Leibler diver-
gence as one part of the loss function, which is often used to
measure the distance between two distributions. Let us first
calculate the probabilistic representation 7' and F' for the
ground-truth saliency map G1' and the predicted saliency
map P, respectively:

.. GT(,7) RN ()
T(ZL])_ SGT“"G’ F(Z7])_ SP+€7
where SGT = 3_(, - GT'(i,j), SP = 3, ;, P(i,7), and

e is set to be 10720 to avoid being divided by zero. Then the
Kullback-Leibler divergence L, is defined as follows:

TG i
Lir = ZT(i,j)log <FE?‘;)) + €> . (11)
(i,9) ’

Meanwhile, the Mean Squared Error (Ljssg) is used as
the other part of the loss function to measure the L? distance
between the ground truth and the prediction:

(10)

1 .. . N2
Luse = 503 (GTG) = PG5 (12)
(1,9)
The final loss function is denoted as follows:
Lyse =Lrr + BLusE, (13)

where [ is a weighting parameter, which is set to be 100 in
our experiments.

Experimental results
Datasets

We carry out tests and comparisons on three datasets:
DHF1K (Wang et al. 2018a), Hollywood-2 (Marszatek,
Laptev, and Schmid 2009) and UCF-sports (Mathe and
Sminchisescu 2014).

DHFIK is a newly collected dataset for free viewing
video saliency prediction. It contains 1,000 videos, in which
the first 700 videos have high quality annotations published
and the remaining 300 videos are held as a benchmark for
testing. Following (Wang et al. 2018a), we use the first 700
videos for training (including 100 for validation) and the last
300 for evaluation.

Hollywood-2 is the largest dynamic eye-tracking dataset
which contains a total of 1,707 videos. Different from
DHFI1K, Hollywood-2 is collected under task-driven, given
that 16 of 19 observers are aware of the action and con-
text while annotating. In this paper, following (Marszatek,
Laptev, and Schmid 2009), we use 823 videos as the train-
ing set and 884 videos as the testing set.

UCF-sports contains 150 videos which cover 9 common
sports action categories. Similar to Hollywood-2, its collec-
tion is also driven by task purpose. Following (Wang et al.
2018a), we use 103 videos for training and 47 videos for
testing.

In addition, we use SALICON (Jiang et al. 2015), an im-
age saliency dataset containing a training set of 10,000 static
images, for pre-training part of the network in order to im-
prove its ability of capturing the static image information.

Metrics

For evaluation of the performance of video saliency predic-
tion, we use five common visual saliency metrics as in (Borji
and Itti 2012; Bylinskii et al. 2018): AUC-Judd (AUC-
J), shuffled AUC (s-AUC), Normalized Scanpath Saliency
(NSS), Similarity Metric (SIM), Linear Correlation Coeffi-
cient (CC). For all of these metrics, larger value means better
performance.

Model Specification

Training setting We first take the training set of the
SALICON dataset to pre-train the network without the
correlation-based ConvLSTM layer for 15 epochs. Then
the training videos from DHF1K, Hollywood-2 or UCF-
sports are used to train the respective network for another 30
epochs with the batch size set to be 1, respectively. We take
Adam as the optimizer with weight decay to be 0.0001. The
learning rate is set 0.0001 at first, then for every 10 epochs,
it drops by a factor of 10. Our network SalSAC is imple-
mented using Pytorch and trained with one Nvidia 1080Ti
GPU.

More details The length of the clip is randomly picked
from each video which ranges from 1 to 60 frames. This is
for keeping the training and testing consistency due to differ-
ent lengths of the videos. During the training phase, the three
multi-level attention maps are randomly shuffled at each it-
eration, while for the testing part they are always fixed to
their original order. We use the data augmentation strategies
of cropping, randomly horizontal flipping and randomly ad-
justing brightness during both the pre-training and training
processes. More specifically, the frames of the DHF1K are
resized to 160 x 288 and for the Hollywood-2 and UCF-
sports datasets, the frames are resized to 224 x 224.



Table 1: Ablation studies on the validation set of DHF1K.

Factors Model Variants of SalSAC ‘ AUC-J] NSS CC SIM  s-AUC
Baseline w/o Atten. & ConvLSTM, w/ single level feature & pre-train | 0.881  2.408 0.446 0.335 0.676
Full Settings | - 0.898 2.624 0.480 0.364 0.729
w/o attention 0.894 2.580 0.472 0.357 0.698
Attention w/ a single-scale attention 0.896 2.600 0.475 0362 0.700
w/ unshuffled multi-scale attention 0.896 2.613 0477 0361 0.700
w/o ConvLSTM 0.892 2461 0455 0345 0.682
ConvLSTM | W/ traditional ConvLSTM 0.894 2547 0.466 0346 0.702
w/ correlation-based ConvLSTM vl 0.896 2.558 0.469 0.351 0.709
w/ correlation-based ConvLSTM v2 0.897 2.588 0.473 0.357 0.696
Training w/o pre-train 0.890 2.594 0.468 0.352 0.688
Ablation Studies Impact of pre-training It is observed that without pre-

To validate the design of our network SalSAC, we explore
some model variants on the validation set of the DHFI1K.
The model variants and their performance are reported in
Table 1. The results clearly verify the effectiveness of all
important design features in SalSAC.

Impact of attention The attention mechanism obviously
does improve the saliency prediction performance. Note
that, we calculate the attention map of the feature extracted
from the last convolutional layer as the single-scale atten-
tion. With the help of multi-scale attention and shuffling op-
eration, the “full-settings” SalSAC achieves the best perfor-
mance over all other settings for attention prediction.

Impact of ConvLSTM We can see that there is a sud-
den drop on NSS (2.624 to 2.461) when the ConvLSTM
layer is removed from SalSAC, which shows that the Con-
vLSTM can make use of the temporal information to help
the saliency prediction.

In addition, to find a best way to balance the influence of
the current frame and its preceding one, we test three vari-
ants of the ConvLSTM layer, namely v1, v2 and the pro-
posed correlation-base ConvLSTM used by SalSAC. For v1,
we use the traditional ConvLSTM but change the final out-
put to:

Cy = \OF™ ™ 4+ (1 — \) Xy, (14)

where Cttmd denotes the output of traditional ConvLSTM,
which means we only balance the output of the ConvL-
STM layer. For v2, we change Eq. (7) for the proposed
correlation-based ConvLSTM to:

Co=F,0C1+1;©Gy, (15)

which means we only balance the input of the ConvLSTM
layer.

From Table 1, we observe that all kinds of balancing
strategies can help enhance the performance on all the met-
rics, except for a little drop on the s-AUC of v2 (0.702 to
0.696) compared with the traditional ConvLSTM. By bal-
ancing both the input and the output of the ConvLSTM,
the “full-settings” SalSAC achieves the best performance in
terms of all five evaluation metrics.

training on the static image dataset SALICON, SalSAC gets
the lowest AUC-J score (0.890) across all the model variants
and has worse performance than SalSAC with pre-training
(“full settings”) on all metrics, thus the pre-training on the
image saliency dataset does help enhance the quality of ex-
tracting static spatial information.

Table 2: Sizes (MB) of the parameters of all the models.
Name ‘ Size ‘ Name ‘ Size ‘ Name ‘ Size ‘
STSConvNet | 315 | DeepVS | 344 | ACLNet | 250
SalEMA 364 | STRA-Net | 641 | SalSAC | 93.5

Comparison Tests

We compare our network SalSAC with many existing state-
of-the-art competitors including STRA-Net (Lai et al. 2019),
ACLNet (Wang et al. 2018a), SalEMA (Linardos et al.
2019), DeepVS (Jiang et al. 2018) and STSConvNet (Bak
et al. 2017), which are all dynamic saliency prediction mod-
els. We specially note that SalSAC uses smaller number of
parameters than most of the competitor models, as shown in
Table 2. STRA-Net uses the most parameters which is about
6.8 times of our SalSAC. Performance results of all these
methods on the DHFI1K test dataset, Hollywood-2 dataset
and UCF-sports datasets are reported in Table 3.

DHF1K For this dataset it is observed that our SalSAC
achieves the best scores in four (NSS, CC and s-AUC, and
having the same best score on AUC-J as STRA-NetAUC-J)
out of the total five metrics. Figure 6 shows the visualization
of a sample from the DHF1K validation set and its attention
and saliency prediction results by SalSAC, where we can
see that the attention maps are very consistent with the final
predictions.

Hollywood-2 SalSAC achieves similar performance as
STRA-Net and performs better than other models on the
Hollywood-2 dataset (the best AUC-J and CC scores are ob-
tained by SalSAC, NSS and s-AUC by STRA-Net and SIM



Table 3: Comparison results on the DHF1K, Hollywood-2 and UCF-sports datasets. The best scores are shown in bold.

Figure 6: Visualization of the results of a sample from the
DHFIK validation set by SalSAC.

by ACLNet). Figure 7 visualizes the testing results of a com-
plicated case in the test set of Hollywood-2 by SalSAC and
STRA-Net, which indicates that SalSAC can better handle
dynamic changes.

STRA-Net

SalSAC Groundtruth

Frames

Figure 7: Visualization of the results of a testing sample
from the Hollywood-2 testing set, in which SalSAC captures
the man’s hand better than STRA-Net.

UCF-sports For the UCF-sports dataset, SalSAC clearly
achieves the best performance in all five metrics. The visu-
alization result of a sample from the UCF-sports testing set
is shown in Figure 8.

More discussions Compared with the Hollywood-2 and
UCF-sports datasets, the DHF1K dataset is indeed more
complicated due to the free-viewing design. On the other
hand, the closer we get to the real human fixation, more help-
ful the free-viewing datasets will be in the future. It is also

\%t]ag DHF1K Hollywood-2 UCF-sports

Mode AUC-] NSS CC SIM s-AUC| AUC-] NSS CC SIM s-AUC| AUC-J] NSS CC SIM s-AUC

STSConvNet| 0.834 1.632 0.325 0.197 0.581 0.863 1.748 0.382 0.276 0.710 | 0.832 1.753 0.343 0.264 0.685
DeepVS 0.856 1.911 0.344 0.256 0.583 | 0.887 2.313 0.446 0.356 0.693 | 0.870 2.089 0.405 0.321 0.691
ACLNet 0.890 2.354 0.434 0.315 0.601 0.913 3.086 0.623 0.542 0.757 | 0.897 2.567 0.510 0.406 0.744
SalEMA 0.890 2.574 0.449 0.466 0.667 | 0.919 3.186 0.613 0.487 0.708 | 0.906 2.638 0.544 0.431 0.740

STRA-Net | 0.895 2.558 0.458 0.355 0.663 | 0.923 3.478 0.662 0.536 0.774 | 0.910 3.018 0.593 0.479 0.751
SalSAC 0.896 2.673 0.479 0.357 0.697 | 0.931 3.356 0.670 0.529 0.712 | 0.926 3.523 0.671 0.534 0.806
Frames Attention SalSAC Groundtruth Frames STRA-Net SalSAC Groundtruth

Figure 8: Visualization of the testing results of a sample
from the UCF-sports testing set, in which SalSAC produces
more concentrated saliency compared with STRA-Net.

observed that the optical flow is not necessary for predict-
ing the video saliency, i.e., the motion information can be
seen as part of the temporal information. Moreover, not all
the moving objects will arouse interests of human due to the
limitation and concentration of human attention. Thus the
optical flow could bring noise and more computations for
the prediction.

Conclusion

In this paper we have proposed and investigated a new CNN-
LSTM-Attention architecture “SalSAC” for video saliency
prediction, which includes two novel components: a shuffled
attention module and a correlation-based ConvLSTM layer.
The shuffled attention module preserves the attention con-
sistency as the network goes deeper, while the correlation-
based ConvLSTM is used for effectively and adaptively bal-
ancing the importance of the current frame and its preceding
one. Experiments performed on the DHF1K, Hollywood-2
and UCF-sports datasets also have demonstrated that our
SalSAC can outperform many existing state-of-the-art meth-
ods by using similar number of or less parameters.
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