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Abstract

Depth estimation from monocular videos has important
applications in many areas such as autonomous driving and
robot navigation. It is a very challenging problem with-
out knowing the camera pose since errors in camera-pose
estimation can significantly affect the video-based depth
estimation accuracy. In this paper, we present a novel
SC-GAN network with end-to-end adversarial training for
depth estimation from monocular videos without estimat-
ing the camera pose and pose change over time. To ex-
ploit cross-frame relations, SC-GAN includes a spatial cor-
respondence module which uses Smolyak sparse grids to
efficiently match the features across adjacent frames, and
an attention mechanism to learn the importance of features
in different directions. Furthermore, the generator in SC-
GAN learns to estimate depth from the input frames, while
the discriminator learns to distinguish between the ground-
truth and estimated depth map for the reference frame. Ex-
periments on the KITTI and Cityscapes datasets show that
the proposed SC-GAN can achieve much more accurate
depth maps than many existing state-of-the-art methods on
monocular videos.

1. Introduction
Depth estimation from 2D images or videos is critical for

many computer-vision applications, including robotics [4],
autonomous driving [9, 23], 3D reconstruction [58] and
augmented realities [11]. As in many other computer vision
tasks, convolutional neural networks (CNNs) have been
widely applied to depth estimation with significant success
in recent years, such as estimating depth from single im-
ages [18, 19, 20, 40, 2, 57], stereo images [8, 38], multi-
view images [32, 49, 51, 54] and monocular videos [37,
60, 59, 48, 42, 55]. Among them, depth estimation from
monocular videos has drawn more and more interests in re-
cent years since 1) it only requires one monocular camera
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Figure 1. An illustration of the spatial relations between adjacent
frames and depth estimation. (a) The reference frame; (b) the cor-
responding features between two adjacent frames; (c) the depth
map estimated by the proposed SC-GAN.

as in many real scenarios, and 2) spatial relations between
adjacent frames provide important information for depth es-
timation. The goal of our work focuses on developing new
CNN models for depth estimation from monocular videos.

Different from stereo matching where the input pair
of stereo images are taken by two cameras with a fixed
relative pose, the camera pose change between adjacent
frames in videos are time-varying and unknown priorly,
which makes depth estimation from monocular videos a
very challenging problem. Most of the available methods
address this problem by first estimating the camera pose
and pose change over time, usually by training respective
CNNs [46, 50, 60]. For these methods, errors in camera-
pose estimation can significantly affect the accuracy of final
depth estimation [51].

In this paper, we develop a novel network of SC-GAN
(Spatial Correspondence with Generative Adversarial Net-
work) to exploit latent information between adjacent frames
of a monocular video and estimate the depth by supervised
training. We first propose a spatial correspondence (SC)
module to match the features between adjacent frames, as



shown in Figure 1. Inspired by simple observation that
spatial features along different directions make different
amounts of contributions in estimating the depth map, we
introduce a direction-based attention (DBA) mechanism in
the SC module to learn the importance of features along
different directions. One key issue in building the fea-
ture relations between two frames lies in the computa-
tional and memory complexity. With large camera-pose
change between frames and high image resolution, both of
which are common in autonomous driving and virtual real-
ity, the search space of corresponding features between two
frames is very large. To address this issue, we down-sample
patches of interest in adjacent frames using the Smolyak
sparse grid method [47], which brings us both efficiency
and accuracy in building cross-frame spatial relations.

In general, we employ an end-to-end adversarial train-
ing for SC-GAN, where the generator learns to estimate
depth from the input frames, while the discriminator learns
to distinguish between the ground-truth and estimated depth
maps for the reference frame. In the experiments, we
carry out a series of ablation and comparison studies on the
KITTI and Cityscapes benchmark datasets, and find that the
proposed SC-GAN can achieve significantly better perfor-
mance than many existing state-of-the-art monocular depth
estimation methods.

The major contributions of this paper are summarized
below:

• We develop the SC-GAN network, with a newly de-
signed spatial correspondence module, for depth esti-
mation from monocular videos in an end-to-end man-
ner.

• We make use of Smolyak sparse grids to greatly re-
duce the complexity of correlation calculations for the
spatial correspondence of adjacent frames. As far as
we know, this is the first time to use this method for
solving computer vision problems.

• SC-GAN significantly promotes the state-of-the-art
performance of the monocular depth estimation on the
KITTI and Cityscapes datasets.

2. Related Work
The use of deep learning has promoted the depth estima-

tion accuracies on single images [18, 19, 20, 40, 25, 52, 41]
and stereo images [8, 38]. These methods are not very
suitable to address the problem of depth estimation from
monocular videos in that 1) without considering cross-
frame relations, single-image depth estimation methods
usually show limited accuracy, and 2) stereo matching as-
sumes fixed relative pose between two input images, which
is not held for adjacent frames in videos.

Depth estimation from monocular videos has attracted
much interest in recent years. In [37], handcrafted features
were matched between frames for depth estimation and op-
tical flow is also used to improve the depth estimation accu-
racy. Zhou et al. [60] trained a network to estimate the rel-
ative camera pose between adjacent frames and then fed it
to another network for depth estimation. DeepV2D [48] es-
timates the relative camera poses between a key frame and
a set of nearby frames and finally generates a fused depth
map on the key frame. DeepTAM [59] estimates the relative
camera pose and uses it to propagate the known depth map
of a key frame to other frames. Mahjourian et al. [42] com-
bined camera-pose estimation and depth estimation in a sin-
gle network by enforcing the 3D geometry consistency. Yin
et al. [55] considered camera pose estimation, depth estima-
tion and optical flow in a unified network. We can see that
all these methods need to estimate camera-pose change be-
tween frames. Differently, in this paper, we directly exploit
the spatial relations between adjacent frames without esti-
mating the camera pose and pose change along the video.

Also related is another line of work on learning depth
from multi-view stereo [32, 49, 51, 54]. These methods can
be applied to estimate depth maps from monocular videos
if treating multiple adjacent frames as multi-view images.
However, many of these methods require camera poses to
be given [33, 35, 54] and others need to estimate camera
poses [49, 32] just like the video-based depth estimation
methods mentioned above. The proposed SC-GAN does
not estimate the camera poses and we show it can lead to
better depth estimation from monocular videos by various
experiments.

The proposed SC-GAN is a Generative Adversarial Net-
work (GAN) [26] which has drawn broad attention in style
transfer [16, 36], image-to-image translation [34, 62], im-
age editing [61] and cross-domain image generation [5, 15].
In [45], a GAN network was proposed to refine the es-
timated disparity map in image-based stereo matching.
In [12, 14, 1], the classical GAN was adapted to estimate
the depth from a single image. In [44], the cycled generative
networks are deployed to estimate depth from stereo pair in
an unsupervised manner. Different from these works, we
develop in this paper a new GAN network to address video-
based depth estimation, which utilizes information from ad-
jacent frames.

The sparse grid technique is an effective numerical
method with high computational efficiency for represen-
tation, interpolation and integration of functions in multi-
dimensional spaces, and was first proposed in [47] by
Smolyak based on sparse tensor products. Since then it has
been widely used in approximation theory [3], uncertainty
quantification and high-dimensional integrations [6], global
optimization [43], data compression [24] and etc. In this
paper, we use Smolyak sparse grids for down-sampling and



Figure 2. Architecture of the proposed SC-GAN consisting of a generator and a discriminator.

facilitating cross-frame feature correspondence in the spa-
tial correspondence module of SC-GAN.

3. Proposed Method

The proposed SC-GAN network consists of a generator
and a discriminator that compete against each other. Fig-
ure 2 presents the detailed architecture of SC-GAN. The in-
puts are triple adjacent frames in a video – frames -1, 0, and
1. Among them, frame 0 is the reference frame from which
we seek to estimate the depth map. While this architecture
can be extended to consider more or less adjacent frames,
in this paper we focus on triple-frame inputs for simplicity.

3.1. Network architecture

The generator network of SC-GAN includes a spatial
correspondence module, a direction-based attention mech-
anism and a depth map refinement module, which takes
the group of triple adjacent frames as input and outputs
the depth map in an end-to-end manner. Firstly, it begins
by using ResNet-50 [29] to extract features from the input
frames (all with the same size W × H) and then for each
frame the atrous spatial pyramid pooling (ASPP) [10] mod-
ule is employed to extract features from multiple large re-
ceptive fields via dilated convolutional operations with di-
lation rates (6, 12, 18). The output feature map for each
frame is then a W

4 ×
H
4 × C̃ tensor where C̃ represents the

number of channels. Note that ResNet-50 and the ASPP
module are weight sharing among all three branches. Sec-
ondly, the spatial correspondence module combined with
the direction-based attention mechanism is used to form
correlation features for each pair of the reference frame and
one of its adjacent frames. Thirdly, the correlation features

and the batch normalized features of the reference frame are
fed together into the weight-sharing refinement subnetwork
to get the respective initial depth map for each pair. Finally,
the concatenation of all initial depth maps from all pairs is
the input of a 3 × 3 convolution layer to predict the final
depth map of the reference frame.

During the training phase, we use the Markovian dis-
criminator (PatchGAN [34]) which consists of 4 × 4
Convolution-InstanceNorm-LeakyReLU layers. The dis-
criminator is used to distinguish the pair of the predicted
depth map and the reference frame with the pair of the
ground-truth depth map and the reference frame, and then
to provide feedback to the generator.

3.2. Spatial correspondence

Inspired by Flownet [17] which introduces a “correla-
tion layer” that performs multiplicative patch comparisons
between two feature maps, we propose a spatial correspon-
dence module to match the features. An illustration of the
spatial correspondence is shown in Figure 3. Let k be the
maximum displacement when corresponding the features
between the feature map fr of the reference frame and fea-
ture map fa of one of its adjacent frames. For the feature
at each position (i, j) of fr, the search space for its corre-
sponding feature position in fa is a (2k + 1) × (2k + 1)
square patch centered at (i, j). One common way is to de-
fine their spatial correlation features as a W

4 ×
H
4 ×C tensor

V with C = (2k + 1)2 and each of its entry is given by

V(i, j, c) = C(fr(i, j), fa(i+ o1, j + o2)) (1)

for o1, o2 ∈ [−k, k] where c = (o1 + k)(2k+ 1) + (o2 + k)
and the function C denotes a 1 × 1 convolution (equivalent
to the dot-product operation in this case). Thus the spatial



correlation features V outputs C values for each position
(i, j) of the reference fr, which could be quite large when
the maximum displacement k is large, especially for high-
resolution input images.

C

Reference Frame

fr

Adjacent Frame

fa

Figure 3. Architecture of the spatial correspondence module. The
grey squares represent the feature maps from the reference frame
and one of its adjacent frames, respectively, and the volume on
the right indicates the obtained correlation features V defined in
Eq. (1).

A typical way to reduce the search space is to down-
sample the (2k+1)×(2k+1) square patch and only search
for the corresponding features from a sparse set of posi-
tions. Uniform sampling is certainly a choice – as shown
in Figure 4-(a), for a given sampling rate r, the third di-
mension (i.e., the number of channels) of the correlation
feature tensor V can be reduced to C = d 2k+1

r e
2 by uni-

form sampling. In this paper, we propose to use Smolyak
sparse grids [47] for non-uniform sampling, which has been
successfully used in many other applications.

The set of Smolyak sparse grids S in a square domain in
two dimensions is defined as

Sl =
⋃

α1+α26l

(Θx
α1

⊗
Θy
α2

), (2)

where l denotes the level of the sparse grids, α1 and α2

are nonnegative integers, and Θj
α is the one-dimensional in-

terpolation abscissas, which can be 2α + 1 uniformly dis-
tributed points (uniform-type) or the roots (need to be ac-
cordingly scaled by the domain size) of the (2α − 1)-order
Chebyshev polynomial {cos( (n−1/2)π

2α−1 )}2
α−1
n=1 plus two end

points (Chebyshev-type).
Since the distribution of Smolyak sparse grid points (es-

pecially Chebyshev-type) is highly non-uniform, we project
all grid points to their nearest integer-coordinate points in
the frame then remove all duplicated ones in order to avoid
extra interpolations cost in practice. Such set of approxi-
mate Smolyak sparse grid-points at each level l is denoted
as S̃l. Consequently, the third dimension of the feature ten-
sor V becomes C = |S̃l| with the use of S̃l as the sam-
pling points, which can be much smaller than (2k + 1)2

and significantly reduces the amount of calculations while
still maintaining good approximation accuracies of the cor-
relation information. Sampled points by using two types of

(a) Uniform sampling

r = 5 r = 4 r = 3 r = 2

(b) Smolyak sparse grids of uniform-type

l = 1 l = 2 l = 3 l = 4

l = 5 l = 6 l = 7 l = 8

(c) Smolyak sparse grids of Chebyshev-type

l = 1 l = 2 l = 3 l = 4

l = 5 l = 6 l = 7 l = 8

Figure 4. Sampled points by using different down-sampling meth-
ods on a 49 × 49 square patch. (a) Uniform samplings; (b)
Smolyak sparse grids of uniform-type; (c) Smolyak sparse grids
of Chebyshev-type.

Smolyak sparse grids at different levels on a 49× 49 square
patch are illustrated in Figure 4-(b) and (c), respectively.

In the later experiment, we will conduct ablation stud-
ies to compare the performance of using uniform down-
sampling, and Smolyak sparse grids of uniform-type
and Smolyak sparse grids of Chebyshev-type for down-
sampling.

3.3. Direction-based attention mechanism

To enable the spatial correspondence module to se-
lectively leverage the spatial correlation features aggre-
gated along different directions, we propose a direction-
based attention mechanism (DBA), inspired by the DSC
method [31] and the Squeeze-and-Excitation Blocks [30].
An illustration of the DBA mechanism is shown in Figure 5,
which consists of an adaptive average pooling layer, two



fully connected (FC) layers, and a ReLU layer and gener-
ates a direction-wise attention vector for each pair of feature
maps (fr and fa) of the reference frame and one of its adja-
cent frames.

The DBA mechanism starts from computing a vector
w ∈ R2C̃ from features of the reference and adjacent
frames:

w =
16

H ×W

H/4∑
i=1

W/4∑
j=1

〈fr(i, j), fa(i, j)〉, (3)

where 〈·, ·〉 denotes the concatenation. Then the direction-
based vector wDBA ∈ RC is defined as:

wDBA = W 2 · R(W 1 ·w), (4)

where R stands for the ReLU function and W 1 ∈ RC×2C̃
and W 2 ∈ RC×C are the weight matrices for two fully con-
nected layers. The final direction-based correlation feature
tensor Vfinal is then defined by

Vfinal(i, j, c) = V(i, j, c) ·wDBA(c), (5)

for c = 0, 1 · · · , C − 1.

Figure 5. Architecture of the direction-based attention (DBA)
mechanism.

Note that, our DBA mechanism is different from the
prior DSC method [31] and the Squeeze-and-Excitation
Blocks [30]. By including the pooling layer, the DBA
mechanism uses global information to learn the weight
of all possible directions, while the DSC method [31])

uses local information only. The Squeeze-and-Excitation
Blocks [30] learns the interdependencies between channels
from a single image, while the proposed DBA mechanism
learns a vector to represent the weight to reflect the impor-
tance of each of the directions.

3.4. Depth map refinement

In order to provide dense depth predictions with high res-
olution, we build a weight-sharing refinement subnetwork
to refine the predicted depth map for each group of input
frames. The input of the refinement subnetwork is the con-
catenation of Vfinal and Vbn, where Vfinal is the final cor-
relation feature map defined in Eq. (5) and Vbn is the result
of batch normalization on fr.

The refinement subnetwork is depicted in Figure 6,
which includes a series of deconvolution, concatenation,
and convolution operations, as in [56, 17]. Following these
operations, we can leverage both high-level and low-level
information from three parts including the features gener-
ated from the ASPP module, features obtained after Conv0
layer in ResNet, and the original reference frame. The ker-
nel size in convolution blocks is 3× 3 and each deconvolu-
tion layer doubles the resolution of the result. And finally,
obtain an initial estimate of the depth map with the same
resolution as the original frame.

3.5. Loss function

SC-GAN contains a generator G to estimate the depth
map G(R) for the reference frame R as described above,
and a discriminator D to distinguish the ground-truth depth
map Md and the predicted depth map G(R) of the refer-
ence frame. Following [34, 12], SC-GAN is trained with
a per-pixel loss term LL1 and an adversarial loss term
minG maxD LGAN :

L = LL1 + λmin
G

max
D
LGAN , (6)

where λ is the balancing factor. Since the ground-truth
depth map is usually sparse, we define ϕ as the mask opera-
tion converting the estimated depth maps to the correspond-

C
o
n
c
a
t

C
o
n
v

Deconv

Concat

Conv

Reference frameFeature from Conv0
Feature from 

ASPP module

Figure 6. Architecture of the refinement subnetwork.



ing sparse ones. The per-pixel loss term LL1 is defined as:

LL1 = EMd,G(R)[‖Md − ϕ(G(R))‖1]. (7)

The adversarial loss is expressed as:

min
G

max
D
LGAN (G,D) = ER,Md

[logD(R,Md)]+

ER,G(R)[log(1−D(R,ϕ(G(R))))],
(8)

whereG tries to minimize this loss against an adversarialD
that tries to maximize it. The purpose of using the adversar-
ial loss is to classify the overlapping pairs of the reference
frame and the depth patches as being real or fake.

4. Experiments
4.1. Datasets and evaluation metrics

The following two datasets are used for performance
evaluation and comparisons of the proposed SC-GAN with
many existing state-of-the-art networks on depth estimation
from monocular videos.

KITTI [22]: The KITTI dataset is the most commonly
used benchmark in prior works for evaluating the depth, dis-
parity and ego-motion accuracy [21, 60], which includes a
full suite of data sources such as stereo videos and sparse
depth maps from LIDAR. For our experiments, we only use
the monocular video streams and the corresponding sparse
depth maps for training and the reference frames in the test
split are the same as the KITTI Raw Eigen test split [19, 60].

Cityscapes [13]: The Cityscapes dataset consists of a
large set of stereo video sequences recorded in streets from
50 different cities with ground-truth disparities. Due to
the focus on monocular videos, we choose the image se-
quences, each of which is 30-frame snippet (17Hz) around
a left 8-bit image from the train, validation, and test sets
(150,000 images). For each sequence, we take its left 8-
bit image as the reference frame, together with its adjacent
two frames, as input to the network. The ground-truth depth
map for each reference frame is inferred from its disparities.

Our evaluations are based on several metrics from prior
work [19] – Error metrics: absolute relative difference (Abs
Rel), squared relative difference (Sq Rel), root-mean-square
error (RMSE), log RMSE (RMSE log); and Accuracy met-
rics: the accuracy with threshold δ = {1.25, 1.252, 1.253}
respectively. For all error metrics, the lower the better,
while for the accuracy metrics, the higher the better.

4.2. Model specification

The proposed SC-GAN was implemented based on Py-
Torch, and all trainings were done on two Nvidia 1080
GPUs with the minibatch SGD and the Adam solver (the
momentum parameters β1 = 0.5, β2 = 0.999). Following
the standard approach from [34], we performed one gradi-
ent descent step on discriminator, then one step on genera-
tor. We trained our model from scratch using the training

dataset with the batch size of 1, and kept the same learn-
ing rate (lr = 0.0002) for both generator and discriminator.
We performed color normalization on the entire dataset for
data preprocessing, and during the training process, all im-
ages were randomly cropped to the size of 256 × 512 and
augmented with random (flip and color) transformations as
done in [19]. We set the number of channel C̃ = 256 for
feature extraction, then each of the resulting feature maps
was a tensor of size 64 × 128 × 256. The maximum dis-
placement k was set to be 24 in the spatial correspondence
module and the maximum depth to be 80 for both datasets.
For all experiments, the balance factor λ = 0.1 was used in
Eq. (6). We trained SC-GAN on the KITTI dataset with 10
epochs while on the Cityscapes dataset with 12 epochs.

Table 1. Ablation study for selecting the down-sampling method
for feature correspondence in SC-GAN on KITTI. The rightmost
column is the computation time (measured in seconds) for pro-
cessing of one group of triple frames in training.

Method Level C Abs Rel Sq Rel RMSE Time

Uniform
sampling

r = 4 169 0.071 0.227 2.444 0.24
r = 3 289 0.068 0.207 2.263 0.26
r = 2 625 0.064 0.181 2.116 0.39

Smolyak
sparse
grids-

Uniform

l = 5 145 0.073 0.228 2.316 0.23
l = 6 289 0.069 0.209 2.312 0.26
l = 7 481 0.066 0.201 2.270 0.32
l = 8 737 0.063 0.181 2.084 0.41

Smolyak
sparse
grids-

Chebyshev

l = 5 129 0.074 0.220 2.319 0.23
l = 6 261 0.069 0.212 2.464 0.26
l = 7 441 0.063 0.178 2.129 0.32
l = 8 669 0.062 0.174 2.082 0.39

(a) (b)

(c) (d)

(e) (f)

Figure 7. Depth maps resulting from different model variants of
SC-GAN: (a) the reference frame; (b) the depth map estimated
without the spatial correspondence module; (c) the depth map esti-
mated without the direction-based attention module; (d) the depth
map estimated without the refinement subnetwork; (e) the depth
map estimated without the adversarial loss; (f) the depth map esti-
mated by the full version of SC-GAN.



Table 2. Comparison of a number of different model variants of SC-GAN on KITTI.

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

w/o Spatial correspondence 0.079 0.222 2.301 0.111 0.949 0.981 0.994
w/o DBA mechanism 0.065 0.174 2.182 0.094 0.956 0.991 0.997

w/o Refinement 0.103 0.409 3.354 0.150 0.895 0.979 0.991
w/o Adversarial loss 0.069 0.234 2.653 0.120 0.934 0.990 0.995

Full version of SC-GAN 0.063 0.178 2.129 0.097 0.961 0.993 0.998

Table 3. Performance comparison of SC-GAN and some existing state-of-the-art networks on KITTI. Note that the ? marks the method is
in the semi-supervised or unsupervised manner.

Method Input Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [19] Single image 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. [40] Single image 0.202 1.614 6.523 0.275 0.678 0.895 0.965
DORN [20] Single image 0.072 0.307 2.727 0.120 0.932 0.984 0.994

DfUSMC [28]? Stereo 0.346 5.984 8.879 0.454 0.617 0.796 0.874
Godard et al. [25]? Stereo 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Kuznietsov et al. [39] Stereo 0.113 0.741 4.621 0.189 0.862 0.960 0.986
Guo et al. [27] Stereo 0.097 0.653 4.170 0.170 0.889 0.967 0.986

Zhou et al. [60]? Video 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Yin et al. [55]? Video 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Yang et al. [53] Video 0.097 0.734 4.442 0.187 0.888 0.958 0.980
Teed et al. [48] Video 0.091 0.582 3.644 0.154 0.923 0.970 0.987

SC-GAN Video 0.063 0.178 2.129 0.097 0.961 0.993 0.998

Reference frame Ground-truth SC-GAN DORN

Figure 8. Visualization of three testing results from KITTI. From left to right: the reference frame, the ground-truth depth map, the predicted
depth map by SC-GAN and the predicted depth map by DORN.

4.3. Ablation studies

We first carry out a study to select the down-sampling
method and parameters for feature correspondence in
the proposed SC-GAN. Without down-sampling, we need
search all C = 49 × 49 = 2, 401 points in the patch. The
uniform sampling with different rates (r = 4, 3, 2) and the
approximated uniform-type and Chebyshev-type Smolyak
sparse grids S̃l at different levels (l = 5, 6, 7, 8) are tested
and compared on the KITTI dataset. The results in Ta-
ble 1 show that: 1) compared to uniform sampling, the
Smolyak sparse grids tend to be more efficient and effective
for spatial correlation when C becomes larger since uni-

form sampling may contain a lot of redundant information;
2) by seeking a compromise between the time efficiency
(and memory cost) and the depth estimation accuracy, we
choose the Chebyshev-type Smolyak sparse grid at level 7,
which clearly beats the other two down-sampling methods
with similar numbers of sampled points, i.e., the uniform
sampling with r = 2 and the uniform-type Smolyak sparse
grid at level 7.

In all the remaining experiments, the Chebyshev-type
S̃7 (441 points, about 18.37% of the original 2,401 points)
is used as the down-sampling method in SC-GAN. In this
case, it took about 50 hours of training for SC-GAN on the
KITTI dataset and 40 hours on the Cityscapes dataset.



Table 4. Performance comparison of SC-GAN and some state-of-the-art networks, when trained on Cityscapes and then tested on KITTI.

Method Input Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [19] Single Image 0.423 4.373 8.487 0.356 0.655 0.871 0.951
Godard et al. [25] Stereo 0.233 3.533 7.412 0.292 0.700 0.892 0.953

Caser et al. [7] Video 0.153 1.109 5.557 0.227 0.796 0.934 0.975
SC-GAN Video 0.149 0.921 4.812 0.192 0.818 0.954 0.987

Reference frame Groundtruth Trained on Cityscapes Trained on KITTI

Figure 9. Three sample results in testing the generalization ability of SC-GAN. First row is an example from KITTI, and the bottom two
rows are examples from Cityscapes. From left to right are the reference frame, the ground-truth depth map, the depth map predicted by
SC-GAN trained on Cityscapes, the depth map predicted by SC-GAN trained on KITTI.

Next, we conduct ablation study to justify different mod-
ules of SC-GAN on the KITTI dataset, including 1) the spa-
tial correspondence module; 2) the direction-based attention
mechanism; 3) the refinement subnetwork; and 4) the adver-
sarial loss. The quantitative results are reported in Table 2
and a sample result of depth maps are shown in Figure 7.
We can see that all these four modules can help improve the
depth estimation.

4.4. Comparisons with existing networks

Firstly, we evaluate and compare the performance of SC-
GAN with eleven existing state-of-the-art networks [19, 40,
20, 28, 25, 39, 27, 60, 55, 53, 48] for depth estimation on the
KITTI dataset. All these networks are trained on the KITTI
dataset and Table 3 reports the evaluation results. It is easy
to see that SC-GAN achieves the best performance (with
significant better results) under all error and accuracy met-
rics. Figure 8 presents three examples of the depth maps
estimated by SC-GAN and DORN [20].

We also evaluate the generalization ability of SC-GAN.
In this case, SC-GAN is trained only on the Cityscapes
dataset and then tested on the KITTI dataset. Table 4
reports the corresponding performance evaluation results,
from which we see that SC-GAN again significantly out-
performs the three comparison methods [19, 25, 7]. The re-
sults of this generalization test for other comparison meth-

ods are not available in literature. We also note that when
testing on the KITTI dataset, SC-GAN trained on Citys-
paces can even get comparable performance to several su-
pervised and semi-supervised models [25, 55, 39] that are
trained on KITTI (see Table 3 and Table 4). Figure 9
visually illustrates the estimated depth maps for three ex-
amples produced by SC-GAN that are trained on different
datasets. All these results clearly demonstrate the excellent
generalization ability of the proposed SC-GAN.

5. Conclusion
In this paper, we developed a novel end-to-end SC-GAN

network for depth estimation from monocular videos. SC-
GAN consists of a generator and a discriminator. In the
generator, a spatial correspondence module is designed to
match the features between the reference frame and its adja-
cent frames. We proposed to use the approximate Smolyak
sparse grids for patch down-sampling that can significantly
speed up the feature correspondence. We further devel-
oped a direction-based attention mechanism to learn the im-
portance of features in different directions, and included
a refinement subnetwork to refine the initially estimated
depth maps. Extensive experiments on the KITTI and
Cityscapes datasets demonstrate that the proposed SC-GAN
significantly promotes the state-of-the-art performance of
the depth estimation from monocular videos.
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